PCR - A New Flow Metric Producer Consumer Ratio

Carter Bullard QoSient, LLC

carter@qosient.com

John Gerth Stanford University

gerth@graphics.stanford.edu

FloCon 2014 January 13-16, 2014 Charleston, South Carolina

Problem Statement

- Data Exfiltration is a serious problem
 - Cyber Espionage is primary issue in US Cyber warfare
 - APTI identifies nation state orchestration and exploitation
 - Represents for some, THE worst case scenario
- Detection can be challenging
 - Novel transport strategies can really make it hard
 - Behavioral threshold based systems easily subverted
 - Some involve internal data consolidation, with physical extraction
- For many, the problem is not Data Loss
 - Unknowingly, many infrastructure are used as stepping stones facilitating the transport of data.
 - Implicating them as co-conspirators.
 - Liability and reputation impacts are very damaging

Exfiltration Methods

- Data Exfiltration can be a complex and protracted event
 - "Night Dragon" APT active ~4 years.
 - APTI identifies nation state orchestration and exploitation
- Majority of the nodes involved are transport nodes, not sources
- Use of overt and covert channels is common
 - IP Multicasting for extra work group exfiltration (overt)
 - Non-IP LAN based data exchange for consolidation and exfiltration
 - Browser based covert channels DNS prefetching, Java scripting
 - DNS tunneling, HTTP tunneling, XXX tunneling
 - Piggyback transporting NTPv3, VoIP, ICMP, SIP
- Insider exfiltration generally uses physical media
 - Normally involves data consolidation to a set of extraction nodes, to facilitate physical removal of the data.

Exfiltration Detection

- Data Loss Protection strategies fall short
 - Exfiltration is not exclusively a data loss problem
 - Many impacted by exfiltration exploits are just stepping stones
 - For these sites, content based detection fails, as its not their data.
 - Distributed exploitation frameworks, such as "mesh in mesh out" fabrics, make load based identification very difficult.
- Bell-La Padula type formal methods may provide some help
 - Detect transformation from normal node to an exfiltration node
 - Need new metrics
- Propose that exfiltration is a shift in producer / consumer roles
 - Better methods to describe producer / consumers will really help
 - Early detection involves identifying leading indicators

Producer Consumer Roles

- The purpose of a communications network is to facilitate producer / consumer functions
 - The nature of the produce / consumer role can be formalized, identified, analyzed, tracked and controlled.
- All network nodes are producers and consumers of data
 - All nodes consume network control services
 - ARP and DNS
 - All nodes provide network services, some more than others
 - Switches, routers, file systems, web servers, name servers, whatever
 - Use of the network is a consumer / producer relationship
 - Nodes using applications generally are producers or consumers
 - Nodes supporting applications, generate application exchange
- Exfiltration is a modification of the highly granular and aggregated consumer / producer relationships of an organization of systems.

Producer Consumer Ratio Novel Flow Metric

- Basic Computer Science Semantics
- Fundamental Flow Dynamic
- Basis for Behavioral Classification
- Simple Arithmetic / Statistical Operations
- Support All Flow Data Operations
 - Aggregation, Inverse, Filtering, Selection, Search, Bining, Metadata Enhancement

Producer Consumer Ratio Definition

Intuition

A normalized value indicating directionality of application information transfer, independent of data load or rate.

PCR =

SrcApplicationBytes – DstApplicationBytes

SrcApplicationBytes + DstApplicationBytes

Application Bytes = $(Total Bytes - Sum(L_{[2, 3, 4]} Headers)) - Retrans Bytes$

Producer Consumer Ratio Properties

Consumer Producer

Range: -1.0 <= PCR <= 1.0

Proportions: Source's Fraction = (I + PCR) / 2

Destination's Fraction = (I - PCR)/2

Analytics: Aggregation, Selection (filtering), Sorting, Cluster Analysis, Frequency Analysis, Classification

Sample Values: I.0 – pure push - FTP upload, multicast, beaconing

0.4 – 70:30 export - Sending Email

0.0 – Balanced Exchange - NTP, ARP probe

-0.5 – 3:1 import - HTTP Browsing

-1.0 - pure pull - HTTP Download

PCR and Observation Domains

PCR Situational Applicability

Results

Enterprise Aggregate PCR

Enterprise Aggregate PCR

ARGUS

Enterprise Aggregate PCR

Enterprise Aggregate PCR

- Positive Aggregate PCR caused solely by iCould awacsd apple wide area connectivity service daemon
- Baseline Enterprise PCR Aggregate PCR value after removing awacsd flow metrics

PCR Application Characterization IMAPS, HTTPS

PCR Application Stability

HTTPS - One Year Period

Domain Name Servers

PCR

8.8.8.8 DNS Server - Nov, 2012 - Oct, 2013

PCR Covert Channel Analysis

Domain Name Service - dns2tcp

Supporting Slides

PCR Stability Characterization PCR vs Total Application Bytes

Producer Consumer Ratio Stability Study QoSient Osiris DNS Server 10.0.1.1 Nov,2012 - Oct,2013 **PCRatio** N = 463916Producer Consumer Ratio mean = -0.3203780.5 stdev = 0.207990max = 0.000000min = -0.863081median = -0.28301995% = 0.000000-0.5100 200 20 Total Application Bytes

